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Recently Reis and Phillips �Phys. Rev. E 77, 026702 �2008�� proposed a perturbative method to solve the
dispersion equation derived from the linearized lattice Boltzmann equation. We will demonstrate that the
method proposed by Reis and Phillips is a reinvention of an existing method. We would also like to refute a
number of claims made by Reis and Phillips.
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In a recent article �1�, Reis and Phillips �RP� propose a
“more elegant and transparent” approach based on perturba-
tion analysis to solve the “difficult dispersion problem” de-
rived from the linearized lattice Boltzmann equation �LBE�,
as an alternative to the approach of Lallemand and Luo �LL�
�2�. The reasons for their alternative, as RP argue, are that the
approach of LL is “lacking rigor” and “unjustified,” “in par-
ticular when the Knudsen number is large.” RP further claim
that �i� their “derived transport coefficients are valid for all
Knudsen numbers” and �ii� their “perturbative analysis obvi-
ates the need to perform a Chapman-Enskog analysis.” The
purpose of this Comment is to demonstrate that, first, the
“alternative” of RP is a reinvention of an existing method
�3–5�, and second, the above claims made by RP are false.

The LBE can be written concisely in a vector form

f�x j + c�t,tn + �t� − f�x j,tn� = ��x j,tn� , �1�

where bold-font symbols denote Q-tuple vectors for an LBE
model with Q discrete velocities �ci � i=0,1 , . . . ,b�, b= �Q
−1�:

f�x j,tn� ª „f0�x j,tn�, f1�x j,tn�, . . . , fb�x j,tn�…†,

f�x j + c�t,tn + �t� ª �f0�x j,tn + �t� ,

f1„x j + c1�t,tn + �t�, . . . , fb�x j + cb�t,tn + ��t��†,

��x j,tn� ª „�0�x j,tn�,�1�x j,tn�, . . . ,�b�x j,tn�…†,

where † denotes transpose operation; that is, f�x j , tn� is the
vector of precollision values of �f i� at a lattice node x j, f�x j
+c�t , tn+�t� is the vector of the post-collision values of �f i�
which have been transported to the nodes about x j according
to the discrete velocity set �ci�, and ��x j , tn� is the vector of
the changes due to collision. Obviously, one cannot expect to
obtain analytic solutions of Eq. �1� in general. As usual we
have to deal with the linearization of Eq. �1�:

�f�x j + c�t,tn + �t� − �f�x j,tn� = J · �f�x j,tn� , �2�

where �fª f− f�0�, f�0� is the vector of equilibria of �f i�, J is
the Jacobian,

J ª

��

�f
�f = f�0�� , �3�

and ��f�0��=0. The spatial Fourier transform of Eq. �2� is

D−1 · �f̃�km,tn + �t� − �f̃�km,tn� = J · �f̃�km,tn� , �4�

where �f̃�km , tn� is the �discrete� Fourier transform of
�f�x j , tn�, D−1 is the advection operator, and D is a Q�Q
diagonal matrix with the following elements:

Dij ª e−ıci·km�t�ij ,

where ıª�−1. Equation �4� can be concisely written as

�f̃�km,tn� = Hn · �f̃�km,t0� , �5�

where the linearized evolution operator H is

H ª D · �I + J� ,

and I is the Q�Q identity matrix. The solution of the linear-
ized LBE �2� is equivalent to the eigenvalue problem of H,
which cannot be solved analytically in general. A perturba-
tive approach by expanding D in powers of �t �or km� is used
to solve the eigenvalue problem �3–5�:

D = 	
n=0

�
1

n!
�t

nKn, �6�

where the elements of the diagonal matrix K are

Kij = − ıci · km�ij .

Hence H is also expanded in powers of �t:

H = 	
n=0

�
1

n!
�t

nH�n�, H�n�
ª Kn�I + J� . �7�

The perturbative solution for the eigenvalue problem of H
can be obtained order by order in km in the space spanned by
the eigenvectors of H�0�= �I+J�, which can be constructed in
several ways �2–4�. This perturbative method in RP is indeed
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identical to the existing method formulated by Luo et al. to
compute the transport coefficients from the linearized LBE
�3–5�. The only difference, as far as we can tell, is in the
specifics of J: the Jacobian J in the early work of Luo et al.
�3–5� is derived from various lattice gas automaton �LGA�
models, while that in RP is the one derived from the
multiple-relaxation-times �MRT� LBE given by LL �2�. In
other words, RP apply the technique developed earlier by
Luo et al. �3–5� to the generalized LBE model studied by LL
�2� and obtain results identical to those given by LL �2�; not
a single new result was given by RP.

In LL �2�, the Gaussian elimination was used to obtain a
�d+1�� �d+1� matrix for d+1 conserved modes in d dimen-
sions from a Q�Q matrix for athermal LBE models of Q
velocities. The eigenvalue problem is solved perturbatively
in terms of the relaxation rates �si�. This is a formal ap-
proach, and the reason one can neglect terms related to cer-
tain relaxation rates is because of separation of scales related
to these modes. The argument of scale separation has its
physical basis and can be justified rigorously in the
asymptotic limit �6�. The calculations of the eigenvalues of
the matrix H as functions of k can be systematically carried
out by computer algebra software such as Mathematica or
Maple. The fact that the perturbation method of Luo et al.
�3–5� used by RP and the Gaussian elimination used by LL
yield identical results indicate that these two methods are
identical. RP’s argument that LL’s approach is “lacking
rigor” and “unjustified” is thus unfounded.

The work of RP did not only reinvent an existing method
and repeat existing results, but contains erroneous claims
which will be addressed in the following. RP repeatedly
claim that their “derived transport coefficients are valid for
all Knudsen numbers.” First of all, we should point out that
in the diffusive limit of �x

2=�t→0 for incompressible flows,
the LBE does not converge to the Boltzmann equation �6�;
consequently, it cannot correctly model severe nonequilib-
rium effects due to finite Knudsen numbers. Second, to cor-
rectly model slip flows, various slip-velocity models must be
explicitly incorporated into the LBE �7�. The velocity profile
obtained from various LBE models for a microchannel is a
linear superposition of a perfect parabola and a “slip” at the
boundary �5,8�. It is clear that the LBE in its present form
cannot possibly capture the Knudsen layer, regardless the
number of discrete velocities �e.g., �8,9��. Evidence shows
that the lattice BGK models referred to by RP reproduce
qualitatively incorrect results with a moderate Knudsen num-
ber Kn=0.388 for a long microchannel �7,10�. Solutions of a
simple linearized LBE could not possibly have anything to
do with the Knudsen effect in rarefied gases. Finally, when

Kn is large, the flow is far from equilibrium which implies
that a macroscopic theory and subsequently the concept of
transport coefficients are no longer valid. Thus the transport
coefficients derived by RP can definitively not be “valid for
all Knudsen numbers.”

In addition, RP repeatedly state that the analysis of the
linearized dispersion equation �LDE� can make the
Chapman-Enskog analysis “redundant.” This is false. For in-
stance, the LDE analysis cannot retrieve the nonlinear advec-
tion term u ·�u in the Navier-Stokes equation; it cannot be
used to analyze the effects due to boundary conditions �e.g.,
�11��, and for non-Newtonian fluids, it cannot yield nonlinear
terms involving products of jª�u, �u and other higher-
order derivatives of hydrodynamic variables which are im-
portant for viscoelastic fluids �12�. The usefulness of the
LDE lies in its ability to analyze the numerical artifacts due
to finite grid size �x. However, the Chapman-Enskog analysis
has to deal with both �x and �t, and the difficulty of circum-
venting the Chapman-Enskog analysis is not coming from a
finite �x, but from a finite �t.

Finally, RP characterized the LBE with the MRT collision
model as “simply a refined, and renamed, version of the qua-
silinear LBE of Higuera and Jimenez.” This is inaccurate and
misleading. It was D. d’Humières who first formulated the
MRT LBE in its present form �13�. That is, the advection is
executed in velocity space V=RQ, while the collision is car-
ried out in moment space M=RQ, and this projection from
velocity space V to moment space M is absent in the linear
LBE of Higuera and Jiménez �14�. We would like to empha-
size that this projection from velocity space V to moment
space M is essential and crucial for efficient implementation
of LBE algorithms �15�, and it can be related to Grad’s
theory �16� and mode-mode analysis. We would also like to
note that the MRT LBE has also been developed by others
independently. McNamara et al. used the MRT LBE in a
series of papers on thermal hydrodynamics �17–19�. Follow-
ing McNamara et al., Ladd used the MRT LBE for simula-
tions of particulate suspensions �20,21�. While these authors
have contributed to the development of the MRT-LBE
method �17–21�, their emphasis was more on the application
rather than the methodology per se. The work of d’Humières
�13� was the first systematic theoretical formulation of the
MRT-LBE method in its full extend.

In conclusion, the perturbative method used by RP is a
reinvention of an existing method �3–5� and the paper of RP
contains no new result. In addition, the claims made by RP
concerning the ability of the LBE to model finite-Knudsen-
number effects and that of the LDE analysis to circumvent
the Chapman-Enskog analysis are false.
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